
T-RACE: Eine Analyse von race
condition Angriffen bei Ethereum

Transaktionen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Othmar Lechner
Matrikelnummer 11841833

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ass.Prof.in Dipl.-Ing.in Mag.a rer.soc.oec. Dr.in techn. Monika di Angelo
Mitwirkung: Ao.Univ.Prof. Dr. Gernot Salzer

Wien, 1. Jänner 2001
Othmar Lechner Monika di Angelo

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

T-RACE: Tracing race condition
attacks between Ethereum

transactions.

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Othmar Lechner
Registration Number 11841833

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof.in Dipl.-Ing.in Mag.a rer.soc.oec. Dr.in techn. Monika di Angelo
Assistance: Ao.Univ.Prof. Dr. Gernot Salzer

Vienna, January 1, 2001
Othmar Lechner Monika di Angelo

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Othmar Lechner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 1. Jänner 2001
Othmar Lechner

v

Danksagung
Ihr Text hier.

vii

Acknowledgements
Enter your text
here.

ix

Kurzfassung
Ihr Text hier.

xi

Abstract
Enter your text
here.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Contributions . 1

2 Background 3
2.1 Ethereum . 3
2.2 World State . 3
2.3 EVM . 4
2.4 Transactions . 4
2.5 Blocks . 5
2.6 Transaction submission . 5
2.7 Transaction execution . 6
2.8 Nodes . 7
2.9 RPC . 7

3 Transaction order dependency 9
3.1 Approaching TOD . 9
3.2 Motivating examples . 9
3.3 Relation to previous works . 10
3.4 Imprecise definitions . 10
3.5 TOD definition . 13
3.6 State collisions . 16
3.7 TOD candidates . 16
3.8 Causes of state collisions . 17
3.9 Everything is TOD . 19

4 TOD candidate mining 21
4.1 TOD candidate finding . 21
4.2 TOD candidate filtering . 22

xv

4.3 Experiment . 25
4.4 Deduplication . 27

5 Trace analysis 29

6 TOD Attack results 31

7 Tool benchmarking 33
7.1 Systematic Literature Review . 33
7.2 Result . 33

8 Data availability 35

9 Reproducibility 37
9.1 Tool . 37
9.2 Randomness . 37
9.3 Experiment setup . 37

Overview of Generative AI Tools Used 39

List of Figures 41

List of Tables 43

List of Algorithms 45

Bibliography 47

CHAPTER 1
Introduction

Enter your text
here.TBD.

1.1 Contributions

• Precise definition of TOD in the context of blockchain transaction analysis.

• Theoretical discussion of TOD, including compilation of instructions that can cause
TOD.

• Methodology to mine potential TOD transaction pairs using only the RPC interface
of an archive node, rather than requiring local access to it.

1

CHAPTER 2
Background

This chapter gives background knowledge on Ethereum, that is helpful to follow the
remaining paper. We also introduce a notation for these concepts.

2.1 Ethereum
Ethereum is a blockchain, that can be characterized as a "transactional singleton machine
with shared-state". [Woo24, p.1] By using a consensus protocol, a decentralized set
of nodes agrees on a globally shared state. This state contains two types of accounts:
externally owned accounts (EOA) and contract accounts (also referred to as smart
contracts). The shared state is modified by executing transactions. [Tik18]

2.2 World State
Similar to [Woo24, p.3], we will refer to the shared state as world state. The world state
maps each 20 byte address to an account state, containing a nonce, balance, storage and
code1. They store following data [Woo24, p.4]:

• nonce: For EOAs, this is the number of transactions submitted by this account.
For contract accounts, this is the number of contracts created by this account.

• balance: The value of Wei this account owns, a smaller unit of Ether.

• storage: The storage allows contract accounts to persistently store information
across transactions. It is a key-value mapping where both, key and value, are 256
bytes long. For EOAs, this is empty.

1Technically, the account state only contains hashes that identify the storage and code, not the actual
storage and code. This distinction is not relevant in this paper, therefore we simply refer to them as
nonce and code.

3

2. Background

• code: For contract accounts, the code is a sequence of EVM instructions.

We denote the world state as σ, the account state of an address a as σ(a) and the nonce,
balance, storage and code as σ(a)n, σ(a)b, σ(a)s and σ(a)c respectively. For the value
at a storage slot k we write σ(a)s[k]. We will also an alternative notation σ(K), where
we combine the identifiers of a state value to a single key K, which simplifies further
definitions. We have the following equalities between the two notations:

σ(a)n = σ((”nonce”, a))
σ(a)b = σ((”balance”, a))
σ(a)c = σ((”code”, a))

σ(a)s[k] = σ((”storage”, a, k))

2.3 EVM
The Ethereum Virtual Machine (EVM) is used to execute code in Ethereum. It executes
instructions, that can access and modify the world state. The EVM is Turing-complete,
except that it is executed with a limited amount of gas and each instruction costs some
gas. When it runs out of gas, the execution will halt. [Woo24, p.14] For instance, this
prevents execution of infinite loops, as it would use infinitely much gas and thus exceed
the gas limit.

Most EVM instructions are formally defined in. [Woo24, p.30-38] However, the Yellowpa-
per currently does not include the changes from the Cancun upgrade [noa24d], therefore
we will also refer to the informal descriptions available on evm.codes. [sml24]

2.4 Transactions
A transaction can modify the world state by transferring Ether and executing EVM code.
It must be signed by the owner of an EOA and contains following data relevant to our
work:

• sender : The address of the transaction sender2.

• recipient: The destination address.

• value: The value of Wei that should be transferred from the sender to the recipient.
2The sender is implicitly given through a valid signature and the transaction hash. [Woo24, p.25-27]

We are only interested in transactions that are included in the blockchain, thus the signature must be
valid and the transaction’s sender can always be derived.

4

https://www.evm.codes/

2.5. Blocks

• gasLimit: The maximum number of gas, that can be used for the execution.

If the recipient address is empty, the transaction will create a new contract account.
These transactions also include an init field, that contains the code to initialize the new
contract account.

When the recipient address is given and a value is specified, this will be transferred to the
recipient. Moreover, if the recipient is a contract account, it also executes the recipient’s
code. The transaction can specify a data field to pass input data to the code execution.
[Woo24, p.4-5]

For every transaction the sender must pay a transaction fee. This is composed of a base
fee and a priority fee. Every transaction must pay the base fee. The amount of Wei will
be reduced from the sender and not given to any other account. For the priority fee, the
transaction can specify if, and how much they are willing to pay. This fee will be taken
from the sender and given to the block validator, which is explained in the next section.
[Woo24, p.8]

We denote a transaction as T , sometimes adding a subscript TA to differentiate from
another transaction TB.

2.5 Blocks
The Ethereum blockchain consists of a sequence of blocks, where each block builds upon
the state of the previous block. To achieve consensus about the canonical sequence of
blocks in a decentralized network of nodes, Ethereum uses a consensus protocol. In this
protocol, validators build and propose blocks to be added to the blockchain. [noa23] It is
the choice of the validator, which transactions to include in a block, however they are
incentivized to include transactions that pay high transaction fees, as they receive the
fee. [Woo24, p.8]

Each block consists of a block header and a sequence of transactions. We denote
the nth block of the blockchain as Bn and the sequence of transactions it includes as
T (Bn) = (T1, T2, . . . , Tm).

2.6 Transaction submission
This section discusses, how a transaction signed by an EOA ends up being included in
the blockchain.

Traditionally, the signed transaction is broadcasted to the network of nodes, which
temporarily store them in a mempool, a collection of pending transactions. The current
block validator then picks transactions from the mempool and includes them in the
next block. With this submission method, the pending transactions in the mempool are
publicly known to the nodes in the network, even before being included in the blockchain.

5

2. Background

This time window will be important for our discussion on frontrunning, as it gives nodes
time to react on a transaction before it becomes part of the blockchain. [EMC20]

A different approach, the Proposer-Builder Separation (PBS) has become more popularity
recently: Here, we separate the task of collecting transactions and building blocks with
them from the task of proposing them as a validator. A user submits their signed
transaction or transaction bundle to a block builder. The block builder has a private
mempool and uses it to create profitable blocks. Finally, the validator picks one of the
created blocks and adds it to the blockchain. [HKFTW23]

2.7 Transaction execution

In Ethereum, transaction execution is deterministic. [Woo24, p.9] Transactions can access
the world state and their block environment, therefore their execution can depend on
these values. After executing a transaction, the world state is updated accordingly.

We denote a transaction execution as σ
T−→ σ′, implicitly letting the block environment

correspond to the transaction’s block. Furthermore, we denote the state change by a
transaction T as ∆T , with prestate(∆T) = σ being the world state before execution and
poststate(∆σT) = σ′ the world state after the execution of T .

For two state changes ∆TA
and ∆TB

, we say that ∆TA
= ∆TB

if they changed the same
set of state fields and the pre- and poststate for these changed fields is equal, otherwise
∆TA

̸= ∆TB
. For instance, if both ∆TA

and ∆TB
modified only the storage slot σ(a)s[k],

and both changed it from the value x to the value y, we would call them equal. If ∆TB

changed it from x′ to y, or from x to y′ or even modified a different storage slot σ(a)s[k′],
we would say ∆TA

̸= ∆TB
.

We define the set of changed state keys as:

changed_keys(∆) := {K|prestate(∆)(K) ̸= poststate(∆)(K)}

We let the equality ∆TA
= ∆TB

be true if following holds, else ∆TA
̸= ∆TB

:

changed_keys(∆TA
) = changed_keys(∆TB

)
∀K ∈ changed_keys : prestate(∆TA

)(K) = prestate(∆TB
)(K)

and poststate(∆TB
)(K) = poststate(∆TB

)(K)

We define σ + ∆T to be equal to the state σ, except that every state that was changed
by the execution of T is overwritten with the value in poststate(∆T). Similarly, σ − ∆T

is equal to the state σ, except that every state that was changed by the execution of T is
overwritten with the value in prestate(∆T). Formally, these definitions are as follows:

6

2.8. Nodes

(σ + ∆T)(K) :=
{

poststate(∆T)(K), K ∈ changed_keys(∆T)
σ(K), otherwise

(σ − ∆T)(K) :=
{

prestate(∆T)(K), K ∈ changed_keys(∆T)
σ(K), otherwise

For instance, if transaction T changed the storage slot 1234 at address 0xabcd from 0
to 100, then (σ + ∆T)(0xabcd)s[1234] = 100 and (σ − ∆T)(0xabcd)s[1234] = 0. For all
other storage slots we have (σ + ∆T)(a)s[k] = σ(a)s[k] = (σ − ∆T)(a)s[k].

2.8 Nodes
A node consists of an execution client and a consensus client. The execution client keeps
track of the world state and the mempool and executes transactions. The consensus client
takes part in the consensus protocol. For this work, we will use an archive node, which is
a node that allows to reproduce the state and transactions at any block. [noa24e]

2.9 RPC
Execution clients implement the Ethereum JSON-RPC specification. [noa24a] This API
gives remote access to an execution client, for instance to inspect the current block
number with eth_blockNumber or to execute a transaction without committing the
state via eth_call. In addition to the standardized RPC methods, we will also make
use of methods in the debug namespace, such as debug_traceBlockByNumber. While
this namespace is not standardized, several execution clients implement these additional
methods [noa24c][noa24h][noa24g].

7

CHAPTER 3
Transaction order dependency

In this chapter we discuss our definition of transaction order dependency (TOD) and
various properties that come with it. We first lay out the idea of TOD with a basic
definition and then show several shortcomings of this simple definition. Based on these
insights, we construct a more precise definition that we will use for our analysis.

3.1 Approaching TOD

Intuitively, a pair of transactions (TA, TB) is transaction order dependent (TOD), if the
original execution order leads to a different result than a reordered execution order. In
formal terms, we write this as following:

σ
TA−−→ σ1

TB−−→ σ′

σ
TB−−→ σ2

TA−−→ σ′′

σ′ ≠ σ′′

So, starting from an initial state, when we execute first TA and then TB it will result in
a different state, than when executing TB and afterwards TA.

We will refer to the execution order TA → TB, the one that occurred on the blockchain,
as the normal execution order, and TB → TA as the reversed execution order.

3.2 Motivating examples

TBD. Add a motivating
example for write-
read TOD (e.g.
TOD-recipient)
and for write-write
TOD (e.g. ERC-20
approval).

9

3. Transaction order dependency

3.3 Relation to previous works
In [TCS21] the authors do not provide a formal definition of TOD. However, for displace-
ment attacks, they include the following check to detect if two transactions fall into this
category:

[...] we run in a simulated environment first TA before TV and then TV

before TA. We report a finding if the number of executed EVM instructions
is different across both runs for TA and TV , as this means that TA and TV

influence each other.

Similar to our intuitive TOD definition, they execute TA and TV in different orders and
check if it affects the result. In their case, they only check the number of executed instruc-
tion, instead of the resulting state. This would miss attacks where the same instructions
were executed, but the operands for these instructions in the second transaction changed
because of the first transaction.

In [ZWC+23a], they define an attack as a triple A = ⟨Ta, Tv, T p
a ⟩, where Ta and Tv are

similar to the TA and TB from our definition, and T p
a is an optional third transaction.

They consider the execution orders Ta → Tv → T p
a and Tv → Ta → T p

a . They monitor
the transactions to check if the execution order impacts financial gains, which we will
discuss later in more detail.Add a reference

when the section
exists We note that if these two execution orders result in different states, this is not because

of the last transaction T p
a , but because of a TOD between Ta and Tv. As we always

execute T p
a , and transaction execution is deterministic, it only gives a different result

if the execution of Ta and Tv gave a different result. Therefore, if the execution order
results in different financial gains, then Ta and Tv must be TOD.

3.4 Imprecise definitions
Our intuitive definition of TOD, and the related definitions shown above, are not precise
on the semantics of a reordering of transactions and their executions. These make it
impossible to apply exactly the same methodology without analyzing the source code
related to the papers. We detect three issues, where the definition is not precise enough
and show how these were differently interpreted by the two papers.

For the analysis of the tools by [ZWC+23a] and [TCS21], we will use the current version
of the source codes, [ZWC+23b] and [TCS22] respectively.

3.4.1 Intermediary transactions

To analyze the TOD (TA, TB), we are interested in how TA affected TB. Our intuitive
definition did not specify how to handle transactions that occurred between TA and TB,
which we will name intermediary transactions.

10

3.4. Imprecise definitions

For instance, let us assume that there was one transaction TX in between TA and TB:
σ

TA−−→ σA
TX−−→ σAX

TB−−→ σAXB. The execution of TB clearly could depend on both, TA

and TX . When we are interested in the impact of TA on TB, we need to define what
happens with TX .

For executing the normal order, we would have two possibilities:

1. σ
TA−−→ σA

TX−−→ σAX
TB−−→ σAXB, the same execution as on the blockchain, including

the effects of TX .

2. σ
TA−−→ σA

TB−−→ σAB, leaving out TX and thus having a normal execution that
potentially diverges from the results on the blockchain (as σAB may differ to
σAXB).

When executing the reverse order, we could make following choices:

1. σ
TB−−→ σB

TA−−→ σBA, which ignores TX and thus may impact the execution of TB.

2. σ
TX−−→ σX

TB−−→ σXB
TA−−→ σXBA, which executes TX on σ rather than σA and now

also includes the effects of TX for executing TA.

All of these scenarios are possible, but none of them provides a clean solution to solely
analyze the impact of TA on TB, as we always could have some indirect impact from the
(non-)execution of TX .

In [ZWC+23a], this impact of the intermediary transactions is acknowledged and caused
a few false positives:

In blockchain history, there could be many other transactions between Ta,
Tv, and T a

p . When we change the transaction orders to mimic attack-free
scenarios, the relative orders between Ta (or Tv) and other transactions are
also changed. Financial profits of the attack or victim could be affected
by such relative orders. As a result, the financial profits in the attack-free
scenario could be incorrectly calculated, and false-positively reported attacks
may be induced, but our manual check shows that such cases are rare.

Nonetheless, it is not clear, which of the above scenarios they applied for their analysis.
The other work, [TCS21], does not mention this issue at all. Should I move

the technical as-
pects to an ap-
pendix? e.g. only
discussing the re-
sults here, but
moving the code
analysis to the ap-
pendix?

11

3. Transaction order dependency

Code analysis of [ZWC+23a]

As shown in their algorithm 1, they take as input all the executed transactions. They
use these transactions and their results in the searchVictimGivenAttack method,
where ar represents the attack transaction and result and vr represents the victim
transaction and result.

For the normal execution order (Ta → Tv), they simply use ar and vr and pass them to
their CheckOracle method which then compares the resulting states. As ar and vr are
obtained by executing all transactions, they also include the intermediary transactions
for these results (similar to our σ

TA−−→ σA
TX−−→ σAX

TB−−→ σAXB case).

For the reverse order (Tv → Ta), they take the state before Ta, i.e. σ. Then they execute
all transactions obtained from the SlicePrerequisites method. And finally they
execute Tv and Ta.

The SlicePrerequisites method uses the hbGraph built in StartSession, which
seems to be a graph where each transaction points to the previous transaction from
the same EOA. From this graph, it takes all transactions between Ta and Tv, that are
from the same sender as Tv. This interpretation matches the test case "should slide
prerequisites correctly" from the source code. As the paper does not mention these
prerequisite transactions, we do not know why this subset of intermediary transactions
was chosen.

We can conclude, that [ZWC+23a] executes all intermediary transactions for the normal
order. However, for the reverse order, they only execute intermediary transactions that
are also sent by the victim, but do not execute any other intermediary transactions.

Code analysis of [TCS21]

In the file displacement.py, they replay the normal execution order at the lines
154-155, and the reverse execution order at the lines 158-159. They only execute TA and
TV (in normal and reverse order), but do not execute any intermediate transactions.

3.4.2 Block environments

When we analyze a pair of transactoins (TA, TB), it can be, that these are not part of the
same block. The execution of these transactoins can depend on the block environment they
are executed in, for instance if they access the current block number. Thus, executing TA

or TB in a different block environment than on the blockchain may alter their behaviour.
From our intuitive TOD definition, it is not clear which block environment(s) we use
when replaying the transactions in normal and reverse order.

Code analysis of [ZWC+23a]

The block environment used to execute all transactions is contained in ar.VmContext
and as such corresponds to the block environment of Ta. This means Ta is executed in the

12

3.5. TOD definition

same block environment as on the blockchain, while Tv and the intermediary transactions
may be executed in a different block environment.

Code analysis of [TCS21]

In the file displacement.py line 151, we see that the emulator uses the same block
environment for both transactions. Therefore, at least one of them will be executed in a
different block environment than on the blockchain.

3.4.3 Initial state σ

While our preliminary TOD definition specifies that we start with the same σ in both
execution orders, it is up to interpretation which world state σ is.

Code analysis of [ZWC+23a]

The initial state used to execute the first transaction is ar.State, which corresponds
to the state directly before executing Ta. This includes all previous transactions of the
same block.

Code analysis of [TCS21]

The emulator is initialized with the block front_runner["blockNumber"]-1 and
no single transactions are executed prior to running the analysis. Therefore, the state
cannot include transactions that were executed in the same block before TA.

Similar to the case with the block environment, this could lead to differences between
the emulation and the results from the blockchain, when TA or TV are impacted by a
previous transaction in the same block.

3.5 TOD definition
To address the issues above, we will provide a more precise definition for TOD.

Definition 1 (TOD). Consider a sequence of transactions, with σ being the world state
right before TA was executed on the blockchain:

σ
TA−−→ σA

TX1−−→ . . .
TXn−−−→ σXn

TB−−→ σB

Let ∆TA
and ∆TB

be the corresponding state changes from executing TA and TB, and let
all transactions be executed in the same block environment as they were executed on the
blockchain.

We say, that (TA, TB) is TOD if and only if executing (σXn − ∆TA
) TB−−→ σB′ produces a

state change ∆TB ′ with ∆TB
̸= ∆TB ′.

13

3. Transaction order dependency

Intuitively, we take the world state exactly before TB was executed, namely σXn . We
then record the state changes ∆TB

from executing TB directly on σXn , the same way it
was executed on the blockchain. Then we simulate what would have happened if TA was
not executed before TB by removing its state changes and executing TB on σXn − ∆TA

. If
we observe different state changes for TB when executed with and without the changes of
TA, then we know that TA has an impact on TB and conclude TOD between TA and TB.
If there are no differences between ∆TB

and ∆TB ′, then TB behaves the same regardless
of TA and there is no TOD.

We chose to compare the two executions on the state changes ∆TB
̸= ∆TB ′, rather than

on the resulting states σB ̸= σB′, to detect a wider range of TODs. Comparing on
σB ≠ σB′ would be sufficient to detect write-read TODs, where the first transaction
writes some state and the second transaction accesses this state and outputs a different
result because of this. However, we are also interested into write-write TODs, where TA

writes some state and TB overwrites the same state with a different value, thus hiding
the change by TA.

For example, let TA write the value aaaa to some storage, s.t. we have σXn(a)s[k] = aaaa,
and TB write bbbb to the same storage, s.t. we have σB(a)s[k] = bbbb. When executing TB

last, the world state would have bbbb at this storage slot, and when executing TA last, it
would be aaaa. Therefore, the resulting world state is dependent on the order of TA and
TB. To check for this case, we compare the prestates of each change in ∆TB

and ∆TB ′. In
our example, when executing TB on σXn we would have prestate(∆TB

)(a)s[k] = aaaa (as
the changes from TA are included in this scenario), but when executing on σXn − ∆TA

we
have prestate(∆TB ′)(a)s[k] = 0000 (as the changes from TA are undone in this scenario).
Therefore, checking for inequality between the prestates from the state changes ∆TB

and
∆TB ′ can detect write-write TODs.

Our definition does not include read-write TODs, i.e. we do not check whether executing
TB before TA would have an impact on TA. We focus on detecting TOD attacks, in
which the attacker tries to insert a transaction prior to some transaction T and impact
the behaviour of T with this. Therefore, we assume that the first transaction tries to
impact the second transaction, and not ignore the other way round.

3.5.1 Definition strengths

Performance

To check if two transactions TA and TB are TOD, we need the initial world state σ and
the state changes from TA, TB and the intermediary transactions TXn . With the state
changes we can compute σXn − ∆TA

= σ + ∆TA
+ (

∑i=n
i=0 ∆TXi

) − ∆TA
and then execute

TB on this state. Using state changes allows us to check if TA and TB are TOD with only
one transaction execution, despite including the effects of arbitrary many intermediary
transactions.

If we want to check n transactions for TOD, we could execute all n transactions to

14

3.5. TOD definition

obtain their state changes. There are n2−n
2 transaction pairs, thus if we wanted to

test each pair for TOD we would end up with a total of n + n2−n
2 = n2+n

2 transaction
executions. Similar to [TCS21] and [ZWC+23a], we can filter irrelevant transactions
pairs to drastically reduce the search space.

Similarity to blockchain executions

With our definition, the state change ∆TB
from the normal execution is equivalent to the

state change that happend on the blockchain. Also, the reversed order is closely related
to the state from the blockchain, as we start with σXn and only modify the relevant parts
for our analysis. Furthermore, we prevent effects from block environment changes by
using the same one as on the blockchain.

This contrasts other implementations, where transactions are executed in different block
environments than originally, are executed based on a different starting state or ignore
the impact of intermediary transactions. All three cases can alter the execution of TA

and TB, such that the result is not closely related to the blockchain anymore.

3.5.2 Definition weaknesses

An intuitive interpretation of our definition would be, that we compare TA → TXi → TB

with TXi → TB, i.e. reckon what would have happened if TA was not executed. However,
the definition we provide does not perfectly match this concept. Our definition does not
consider interactions between TA and the intermediary transactions TXi .

In the intuitive model, removal of TA could also impact the intermediary transactions
and thus indirectly change the behaviour of TB. Then we would not know if TA directly
impacted TB, or only through some interplay with intermediary transactions. Therefore,
excluding the interactions between TA and TXi may be desirable, however it can lead to
unexpected results if one is not aware of this.

Indirect dependencies

When we analyze a TOD for (TA, TB) and there is a TOD between TA and some
intermediary transaction TX , then removing TA would impact TX and thus could indirectly
impact TB.

Consider the three transactions TA, TX and TB:

1. TA: sender a transfers 5 Ether to address x.

2. TX : sender x transfers 5 Ether to address b.

3. TB: sender b transfers 5 Ether to address y.

15

3. Transaction order dependency

When executing these transactions in the normal order, and a initially has 5 Ether and
the others have 0, then all of these transactions would succeed. If we remove TA and
only execute TX and TB, then firstly TX would fail, as x did not get the 5 Ether from a,
and consequently also TB fails.

However, when using our TOD definition and computing (σXn − ∆TA
), we would only

modify the balances for a and x, but for b as b is not modified in ∆TA
. Thus, TB would

still succeed in the reverse order according to our definition, but would fail in practice
due to the indirect effect. This shows, how the concept of removing TA does not map
exactly to our TOD definition.

In this example, we had a TOD for (TA, TX) and (TX , TB). However, we can also have
an indirect dependency between TA and TB without a TOD for (TX , TB). For instance,
if TX and TB would be TOD, but TA caused TX to fail. When inspecting the normal
order, TX failed, so there is no TOD between TX and TB. However, when executing the
reverse order without TA, then TX would succeed and could impact TB.

3.6 State collisions

We denote state accesses by a transaction T as a set of state keys RT = {K1, . . . , Kn}
and state modifications as WT = {K1, . . . , Km}.

We define the state collisions of two transactions as:

collisions(TA, TB) = (WTA
∩ RTB

) ∪ (WTA
∩ WTB

)

With WTA
∩ RTB

we include write-read collisions, where TA modifies some state and
TB accesses the same state. With WTA

∩ WTB
we include write-write collisions, where

both transactions write to the same state location, for instance to the same storage slot.
We do not include RTA

∩ WTB
, as we also did not include read-write TOD in our TOD

defintion.

3.7 TOD candidates

We will refer to a transaction pair (TA, TB), where TA was executed before TB and
collisions(TA, TB) ̸= ∅ as a TOD candidate.

A TOD candidate is not necessarily TOD, for instance consider the case that TB only
reads the value that TA wrote but never uses it for any computation. This would be
a TOD candidate, as they have a collision, however the result of executing TB is not
impacted by this collision.

Conversely, if (TA, TB) is TOD, then (TA, TB) must also a TOD candidate. For a write-
write TOD, this is the case, because both TA and TB write to the same state, therefore

16

3.8. Causes of state collisions

we have WTA
∩ WTB

̸= ∅. If we have a write-read TOD, then TB reads some state that
TA wrote, hence WTA

∩ RTB
̸= ∅.

Therefore, the set of all TOD transaction pairs is a subset of all TOD candidates.

3.8 Causes of state collisions

This section discusses, what can cause two transactions TA and TB to have state collisions.
To do so, we show the ways a transaction can access and modify the world state.

3.8.1 Causes with code execution

When the recipient of a transaction is a contract account, it will execute the recipient’s
code. The code execution can access and modify the state through several instructions.
By inspecting the EVM instruction definitions [Woo24, p.30-38][sml24], we compiled a
list of instructions that can access and modify the world state.

In table 3.1 we see the instructions, that can access the world state. For most, the reason
of the access is clear, for instance BALANCE needs to access the balance of the target
address. Less obvious is the nonce access of several instructions, which is because the
EVM uses the nonce (among other things) to check if an account already exists[Woo24,
p.4]. For CALL, CALLCODE and SELFDESTRUCT, this is used to calculate the gas
costs. [Woo24, p.37-38] For CREATE and CREATE2, this is used to prevent creating an
account at an already active address [Woo24, p.11]1.

In table 3.2 we see instructions that can modify the world state.

3.8.2 Causes without code execution

Some state accesses and modifications are inherent to transaction execution. To pay
for the transaction fees, the balance of the sender is accessed and modified. When
a transaction transfers some Wei from the sender to the recipient, it als modifies the
recipient’s balance. To check if the recipient is a contract account, the transaction also
needs to access the code of the recipient. And finally, it also verfies the sender’s nonce
and increments it by one. [Woo24, p.9]

3.8.3 Relevant collisions for attacks

The previous sections list possible ways to access and modify the world state. Many
previous studies have focused on storage and balance collisions, however they did not
discuss if or why code and nonce collisions are not important. Here, we try to argue, why Reference some of

them
1In the Yellowpaper, the check for the existence of the recipient for CALL, CALLCODE and

SELFDESTRUCT is done via the DEAD function. For CREATE and CREATE2, this is done in the F
condition at equation (113).

17

3. Transaction order dependency

Instruction Storage Balance Code Nonce
SLOAD ✓
BALANCE ✓
SELFBALANCE ✓
CODESIZE ✓
CODECOPY ✓
EXTCODECOPY ✓
EXTCODESIZE ✓
EXTCODEHASH ✓
CALL ✓ ✓ ✓
CALLCODE ✓ ✓ ✓
STATICCALL ✓
DELEGATECALL ✓
CREATE ✓ ✓ ✓
CREATE2 ✓ ✓ ✓
SELFDESTRUCT ✓ ✓ ✓

Table 3.1: Instructions that access state. A checkmark indicates, that the execution of
this instruction can depend on this state type.

Instruction Storage Balance Code Nonce
SSTORE ✓
CALL ✓
CALLCODE ✓
CREATE ✓ ✓ ✓
CREATE2 ✓ ✓ ✓
SELFDESTRUCT ✓ ✓ ✓ ✓

Table 3.2: Instructions that modify state. A checkmark indicates, that the execution of
this instruction can modify this state type.

only storage and balance collisions are relevant for TOD attacks and code and nonce
collisions can be neglected.

The idea of an TOD attack is, that an attacker impacts the execution of some transaction
TB, by placing a transaction TA before it. To have some impact, there must be a
write-write or write-read collisions between TA and TB. Therefore, our scenario is that
we start from some (vicim) transaction TB and try to create impactful collisions with a
new transaction TB. We assume some set A to be the set of codes and nonces that TB

accesses and writes.

Let us first focus on the instructions, that could modify the accessed codes and nonces in
A, namely SELFDESTRUCT, CREATE and CREATE2. Since the EIP-6780 update[BBF23],

18

3.9. Everything is TOD

SELFDESTRUCT only destroys a contract if the contract was created in the same trans-
action. Therefore, SELFDESTRUCT can only modify a code and nonce within the same
transaction, but cannot be used to attack an already submitted transaction TB. The
instructions to create a new contract, CREATE and CREATE2, both use the sender’s
address for the calculation of the new contract account’s address, and both fail when
there is already a contract at the target address. [Woo24, p.11] Therefore, we can only
modify the code if the contract did not exist previously. If this is the case, it is unlikely
that TB would make a transaction to exactly this attacker-related address. Therefore,
none of these instructions is usable for a TOD attack via code or nonce collisions. A
similar argument can be made about contract creation directly via the transaction and
some init code.

Apart from instructions, the nonces of an EOA can also be increased by transactions
themselves. The only way that TB can access the nonce of an EOA is through the gas
cost calculation when sending Ether to this address. The calculation returns a different
cost if the recipient already exists, or has to be newly created. Thus, an attack would be
that TB transfers some Ether to an attacker controlled EOA address a which does not
yet exist, and the attacker creates the account at addres a in TA, which slightly increases
the gas cost for TB. Again, this attack seems negligible.

Therefore, the remaining attack vectors are SSTORE, to modify the storage of an account,
and CALL, CALLCODE, SELFDESTRUCT and Ether transfer transactions, to modify the
balance of an account.

3.9 Everything is TOD
Our definition of TOD is very broad and marks many transaction pairs as TOD. For
instance, if a transaction TB uses some storage value for a calculation, then the execution
likely depends on the transaction that previously has set this storage value. Similarly,
when someone wants to transfer Ether, they can only do so when they first received
that Ether. Thus, they are dependent on some transaction that gave them this Ether
previously. How do block re-

wards play into
this? Check and
update accord-
ingly.

Theorem 1. For every transaction TB after the London upgrade2, there exists a trans-
action TA such that (TA, TB) is TOD.

Proof. Consider an arbitrary transaction TB with the sender being some address sender.
The sender must pay some upfront cost v0 > 0, because they must pay a base fee.
[Woo24, p.8-9]. Therefore, we must have σ(sender)b ≥ v0. This requires, that a previous
transaction TA increased the balance of sender to be high enough to pay the upfront
cost, i.e. prestate(∆TA

)(sender)b < v0 and poststate(∆TA
)(sender)b ≥ v0.

When we calculate σ − ∆TA
for our TOD definition, we would set the balance of sender

to prestate(∆TA
)(sender)b < v0 and then execute TB based on this state. In this case,

2We reference the London upgrade here, as this introduced the base fee for transactions.

19

3. Transaction order dependency

TB would be invalid, as the sender would not have enough Ether to cover the upfront
cost.

Given this property, it is clear that TOD alone is not a useful attack indicator, else we
would say that every transaction has been attacked. In the following, we provide some
more restrictive definitions.Frontrunning defi-

nitions TBD.

20

CHAPTER 4
TOD candidate mining

In this chapter, we discuss how we search for potential TODs in the Ethereum blockchain.
We use the RPC from an archive node to obtain transactions and their state accesses
and modifications. Then we search for collisions between these transactions to find TOD
candidates. Lastly, we filter out TOD candidates, that are not relevant to our analysis.

4.1 TOD candidate finding

We make use of the RPC method debug_traceBlockByNumber, which allows replay-
ing all transactions of a block the same way they were originally executed. With the
prestateTracer config, this method also outputs, which state has been accessed, and
using the diffMode config, also which state has been modified1.

By inspecting the source code from the tracers for Reth[Par24] and results from the RPC
call, we found out, that for every touched account it always includes the account’s balance,
nonce and code in the prestate. For instance, even when only the balance was accessed,
it will also include the nonce in the prestate2. Therefore, we do not know precisely which
state has been accessed, which can be a source of false positives for collisions.

We store all the accesses and modifications in a database and then query for accesses
and writes that have the same state key, giving us a list of collisions. We then use these
collisions to obtain a preliminary set of TOD candidates.

1When running the prestateTracer in diffMode, several fields are only implicit in the response. We
need to make these fields explicit for further analysis. Refer to the documentation or the source code for
further details.

2I opened a pull request to clarify this behaviour and now this is also reflected in the
documentation[noa24b].

21

https://github.com/ethereum/go-ethereum/pull/30081

4. TOD candidate mining

4.2 TOD candidate filtering

Many of the TOD candidates from the previous section are not relevant for our further
analysis. To prevent unnecessary computation and distortion of our results, we define
which TOD candidates are not relevant and then filter them out.

A summary of the filters is given in table 4.1 and more detailed explanations are in the
following sections. The filters are executed in the same order as they are presented in the
table and always operate on the output from the previous filter. The only exception is
the "Same-value collision" filter, which is directly incorporated into the initial collisions
query for performance reasons.

The "Block windows", "Same senders" and "Recipient Ether transfer" filters have already
been used in [ZWC+23b]. The filters "Nonce and code collision" and "Indirect dependency"
followed directly from our previous theoretical arguments. Further, we also applied an
iterative approach, where we searched for TOD candidates in a sample block range and
manually analyzed if some of these TOD candidates could be filtered. This led us to the
"Same-value collisions" and the "Block validators" filter.

Filter name Description of filter criteria

Same-value collision Only take collisions where TA writes exactly the value,
that is read or overwritten by TB.

Block windows Drop transactions that are 25 or more blocks apart.
Block validators Drop collisions on the block validator’s balance.
Nonce and code collision Drop nonce and code collisions.

Indirect dependency Drop TOD candidates with an indirect dependency.
e.g. if TOD candidates (TA, TX) and (TX , TB) exist.

Same senders Drop if TA and TB are from the same sender.
Recipient Ether transfer Drop if TB does not execute code.

Table 4.1: TOD candidate filters sorted by usage order. When a filter describes the
removal of collisions, the TOD candidates will be updated accordingly.

4.2.1 Filters

Same-value collisions

When we have many transactions that modify the same state, e.g. the balance of the
same account, they will all have a write-write conflict with each other. The number
of TOD candidates grows quadratic with the number of transactions modifying the
same state. For instance, if 100 transactions modify the balance of address a, the first
transaction would have a write-write conflict with all other 99 transactions, the second
transaction with the remaining 98 transactions, etc., leading to a total of n2−n

2 = 4950
TOD candidates.

22

4.2. TOD candidate filtering

To reduce this growth of TOD candidates, we also require for a collision, that TA writes
exactly the value that is read or overwritten by TB. Formally, following must hold to
pass this filter:

∀K ∈ collisions(TA, TB) : poststate(∆TA
)(K) = prestate(∆TB

)(K)

With the example of 100 transactions modifying the balance of address a, when the
first transaction sets to balance to 1234, it would only have a write-write conflict with
transactions where the balance of a was exactly 1234 before the execution. If all
transactions wrote different balances, this would reduce the amount of TOD candidates
to n − 1 = 99.

Apart from the performance benefit, this filter also removes many TOD candidates that
are potentially indirect dependent. For instance, let us assume that we removed the
TOD candidate (TA, TB). By definition of this filter, there must be some key K with
poststate(∆TA

)(K) ̸= prestate(∆TB
)(K), thus some transaction TX must have modified

the state at K between TA and TB. Therefore, we would also have a collision (and TOD
candidate) between TA and TX , and between TX and TB. This would be a potential
indirect dependency, which could lead to unexpected results as argued in section 3.5.2.

Block windows

According to a study of 24 million transactions from 2019 [ZLYQ21], the maximum
observed time it took for a pending transaction to be included in a block, was below 200
seconds. Therefore, when a transaction TB is submitted, and someone instantly attacks
it by creating a new transaction TA, the inclusion of them in the blockchain differs by
at most 200 seconds. We currently add a new block to the blockchain every 12 seconds
according to Etherscan [Eth24], thus TA and TB are at most 200

12 ≈ 17 blocks apart from
each other. As the study is already 5 years old, we use a block window of 25 blocks
instead, to account for a potential increase in latency since then.

Thus, we filter out all TOD candidates, where TA is in a block that is 25 or more blocks
away from the block of TB.

Block validators

In Ethereum, each transaction must pay a transaction fee to the block validator and
thus modifies the block validator’s balance. This would qualify each transaction pair
in a block as a TOD candidate, as they all modify the balance of the block validator’s
address.

We exclude TOD candidates, where the only collision is the balance of any block validator.

23

4. TOD candidate mining

Nonce and Code collisions

We showed in section 3.8.3, that nonce and code collisions are not relevant for TOD
attacks. Therefore, we ignore collisions for this state type.

Indirect dependency

As argued in section 3.5.2, indirect dependencies can cause unexpected results in our
analysis, therefore we will filter TOD candidates that have an indirect dependency. We
will only consider the case, where the indirect dependency is already visible in the normal
order and accept that we potentially miss some indirect dependencies. Alternatively, we
could also remove a TOD candidate (TA, TB) when we also have the TOD candidate
(TA, TX), however this would remove many more TOD candidates.Do I want to do

this? It would
be simpler and
more efficient to
implement, but we
would end up with
at most one TOD
candidate (TA, TB)
per transaction TA.
I guess it would be
too restricting.

We already have a model of all direct (potential) dependencies with the TOD candidates.
We can build a transaction dependency graph G = (V, E) with V being all transactions
and E = {(TA, TB) | (TA, TB) ∈ TOD candidates}. We then filter out all TOD candidates
(TA, TB) where there exists a path TA, TX1 , . . . , TXn , TB with at least one intermediary
node TXi .

Figure 4.1 shows an example dependency graph, where transaction A influences both X
and B and B is influenced by all other transactions. We would filter out the candidate
(A, B) as there is a path A → X → B, but keep (X, B) and (C, B).

A

B

C

X

Figure 4.1: TOD candidate filters.

Same sender

If the sender of both transactions is the same, the victim would have attacked themselves.

To remove these TOD candidates, we use the eth_getBlockByNumber RPC method
and compare the sender fields for TA and TB.

Recipient Ether transfer

If a transaction sends Ether without executing code, it only depends on the balance of
the EOA that signed the transaction. Other entities can only increase the balance of this
EOA, which has no adverse effects on the transaction.

24

4.3. Experiment

Thus, we can exclude TOD candidates, where TB has no code access.

4.3 Experiment
In this section, we discuss the results of applying the TOD candidate mining methodology
on a randomly sampled sequence of 100 blocks, different to the block range we used
for the development of the filters. Refer to chapter 9 for the experiment setup and the
reproducible sampling.

We mined the blocks from block 19830547 up to block 19830647, containing a total of
16799 transactions.

4.3.1 Performance

The mining process took a total of 502 seconds, with 311 seconds being used to fetch
the data via RPC calls and store it in the database, 6 seconds being used to query the
collisions in the database, 17 seconds for filtering the TOD candidates and 168 seconds
for preparing statistics. If we consider the running time as the total time excluding the
statistics preparation, we analyzed an average of 0.30 blocks per second.

We can also see that 93% of the running time was spent fetching the data via the RPC
calls and storing it locally. This could be parallelized to significantly speed up the process.

4.3.2 Filters

In table 4.2 we can see the number of TOD candidates before and after each filter,
showing how many candidates were filtered at each stage. This shows the importance of
filtering, as we reduced the number of TOD candidates to analyze from more than 60
millions to only 8,127.

Note, that this does not directly imply, that "Same-value collision" filters out more TOD
candidates than "Block windows", as they operated on different sets of TOD candidates.
Even if "Block windows" would filter out every TOD candidate, this would be less than
"Same-value collision" did, because of the order of filter applicatoin.

4.3.3 Transactions

After applying the filters, 7864 transactions are part of at least one TOD candidate.
This is, 46.8% of all transactions, that we mark as potentially TOD with some other
transaction. Only 2381 of these transactions are part of exactly one TOD candidate. On
the other end, there exists one transaction that is part of 22 TOD candidates.

4.3.4 Block distance

In figure 4.2 we can see, that most TOD candidates are within the same block. Morevoer,
the further two transactions are apart, the less likely we include them as a TOD candidate.

25

4. TOD candidate mining

Filter name TOD candidates after filtering Filtered TOD candidates

(unfiltered) (lower bound) 63,178,557
Same-value collision 56,663 (lower bound) 63,121,894
Block windows 53,184 3,479
Block validators 39,899 13,285
Nonce collision 23,284 16,615
Code collision 23,265 19
Indirect dependency 16,235 7,030
Same senders 9,940 6,295
Recipient Ether transfer 8,127 1,813

Table 4.2: This table shows the application of all filters used to reduce the number of
TOD candidates. Filters were applied from top to bottom and each row shows how many
TOD candidates remained and were filtered. The unfiltered value is a lower bound, as we
only calculated this number afterwards, and the calculation does not include write-write
collisions.

A reason for this could be, that having many intermediary transactions makes it more
likely to be filtered by our "Indirect dependency" filter. Nonetheless, we can conclude
that when using our filters, the block window could be reduced even further without
missing many TOD candidates.

4.3.5 Collisions

After applying our filters, we have 8818 storage collisions and 5654 balance collisions
remaining. When we analyze, how often each account is part of a collision, we see that
collisions are highly concentrated around a small set of accounts. For instance, the five
accounts with the most collisions3 are responsible for 43.0% of all collisions. In total, the
collisions occur in only 1472 different account states.

One goal of this paper is to create a diverse set of attacks for our benchmark. With such
a strong imbalance towards a few contracts, it will take a long time to analyze TOD
candidates related to these frequent addresses, and the attacks are more likely related and
do not cover a wide range of attack types. To prevent this, we may filter out duplicate
addresses for collisions.

Figure 4.3 depicts, how many collisions we would get when we only consider the first n
collisions for each address. If we set the limit to one collision per address, we would end
up with 1472 collisions, which is exactly the number of unique addresses where collisions
happened. When we keep 10 collisions per address, we would get 3964 collisions. Such a
scenario would already reduce the amount of collisions by 73%, while still retaining a
sample of 10 collisions for each address, that could cover different types of TOD attacks.

3All of them are token accounts: WETH, DOP, USDT, USDC and CHOPPY

26

https://etherscan.io/address/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
https://etherscan.io/address/0x97a9a15168c22b3c137e6381037e1499c8ad0978
https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7
https://etherscan.io/address/0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
https://etherscan.io/address/0xf938346d7117534222b48d09325a6b8162b3a9e7

4.4. Deduplication

Figure 4.2: The histogram and eCDF of the block distance for TOD candidates. The
blue bars show how many TOD candidates have been found, where TA and TB are n
blocks apart. The orange line shows the percentage of TOD candidates, that are at most
n blocks apart.

4.4 Deduplication
TBD.

27

4. TOD candidate mining

Figure 4.3: The chart shows, how many collisions we have, when we limit the number of
collisions we include per address. For instance, if we only include 10 collisions for each
address we would end up with about 4000 collisions.

28

CHAPTER 5
Trace analysis

29

CHAPTER 6
TOD Attack results

Overall findings of the TOD attack mining and analysis.

31

CHAPTER 7
Tool benchmarking

7.1 Systematic Literature Review

7.2 Result

33

CHAPTER 8
Data availability

TBD.

35

CHAPTER 9
Reproducibility

9.1 Tool
TBD.

9.2 Randomness
TBD.

9.3 Experiment setup
The experiments were performed on Ubuntu 22.04.04, using an AMD Ryzen 5 5500U
CPU with 6 cores and 2 threads per core and a SN530 NVMe SSD. We used a 16 GB
RAM with an additional 16 GB swap file.

For the RPC requests we used a public endpoint[noa24f], which uses Erigon[noa24h]
according to the web3_clientVersion RPC method. We used a local cache to prevent
repeating slow RPC requests. [Fuz24] Unless otherwise noted, the cache was initially
empty for experiments that measure the running time.

37

Overview of Generative AI Tools
Used

No generative AI tools where used in the process of researching and writing this thesis.

39

List of Figures

4.1 TOD candidate filters. 24
4.2 Block distances of TOD candidates . 27
4.3 Limit for collisions per address . 28

41

List of Tables

3.1 State accessing instructions . 18
3.2 State modifying instructions . 18

4.1 TOD candidate filters . 22
4.2 Filtered TOD candidates . 26

43

List of Algorithms

45

Bibliography

[BBF23] Guillaume Ballet, Vitalik Buterin, and Dankrad Feist. EIP-
6780: SELFDESTRUCT only in same transaction, 2023.
https://eips.ethereum.org/EIPS/eip-6780. Accessed 14.7.2024.

[EMC20] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. SoK: Trans-
parent Dishonesty: Front-Running Attacks on Blockchain. In Andrea
Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne, and Massi-
miliano Sala, editors, Financial Cryptography and Data Security, pages
170–189, Cham, 2020. Springer International Publishing.

[Eth24] Etherscan. Ethereum Average Block Time Chart, 2024.
https://etherscan.io/chart/blocktime. Accessed 14.7.2024.

[Fuz24] Fuzzland. ETH RPC Cache Layer, 2024.
https://github.com/fuzzland/cached-eth-rpc. Accessed 16.7.2024.

[HKFTW23] Lioba Heimbach, Lucianna Kiffer, Christof Ferreira Torres, and Roger
Wattenhofer. Ethereum’s Proposer-Builder Separation: Promises and
Realities. In Proceedings of the 2023 ACM on Internet Measurement
Conference, pages 406–420, Montreal QC Canada, 2023. ACM.

[noa23] Gasper, 2023. https://ethereum.org/en/developers/docs/consensus-
mechanisms/pos/gasper/. Accesssed 11.7.2024.

[noa24a] Ethereum JSON-RPC Specification, 2024.
https://ethereum.github.io/execution-apis/api-documentation/. Ac-
cesssed 11.7.2024.

[noa24b] go-ethereum: Built-in tracers, 2024. https://geth.ethereum.org/docs/developers/evm-
tracing/built-in-tracers#prestate-tracer. Accessed 14.7.2024.

[noa24c] go-ethereum: debug Namespace, 2024.
https://geth.ethereum.org/docs/interacting-with-geth/rpc/ns-debug.
Accesssed 11.7.2024.

[noa24d] History and Forks of Ethereum, 2024. https://ethereum.org/en/history/.
Accesssed 10.7.2024.

47

[noa24e] Nodes and clients, 2024. https://ethereum.org/en/developers/docs/nodes-
and-clients/. Accesssed 11.7.2024.

[noa24f] POKT Public RPC Endpoints | Nodies DLB, 2024.
https://docs.nodies.app/free-endpoints/pokt-public-rpc-endpoints.
Accessed 15.7.2024.

[noa24g] Reth Book, 2024. https://reth.rs/jsonrpc/debug.html. Accessed 11.7.2024.

[noa24h] RPC daemon, 2024. https://erigon.gitbook.io/erigon/advanced-usage/rpc-
daemon. Accessed 11.7.2024.

[Par24] Paradigm. revm-inspectors, 2024. https://github.com/paradigmxyz/revm-
inspectors/tree/b9850ffe4d67aadc46cba5e3798bee459a01a560. Accessed
14.7.2024.

[sml24] smlXL. EVM Codes, 2024. https://www.evm.codes/. Accesssed 10.7.2024.

[TCS21] Christof Ferreira Torres, Ramiro Camino, and Radu State. Frontrun-
ner Jones and the Raiders of the Dark Forest: An Empirical Study of
Frontrunning on the Ethereum Blockchain. pages 1343–1359, 2021.

[TCS22] Christof Ferreira Torres, Ramiro Camino, and Radu State. Fron-
trunner Jones, 2022. https://github.com/christoftorres/Frontrunner-
Jones/tree/84e98dae4ab37fad7629433fe3ad41967152431f. Accessed
13.7.2024.

[Tik18] Sergei Tikhomirov. Ethereum: state of knowledge and research perspec-
tives. In Abdessamad Imine, José M. Fernandez, Jean-Yves Marion, Luigi
Logrippo, and Joaquin Garcia-Alfaro, editors, Foundations and Practice
of Security: 10th International Symposium (FPS 2017), Lecture Notes in
Computer Science, pages 206–221. Springer International Publishing, 2018.

[Woo24] Dr Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger. Paris version. 2024.
https://ethereum.github.io/yellowpaper/paper.pdf. Accesssed 10.7.2024.

[ZLYQ21] Lin Zhang, Brian Lee, Yuhang Ye, and Yuansong Qiao. Evaluation of
Ethereum End-to-end Transaction Latency. In 2021 11th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), pages
1–5, 2021. ISSN: 2157-4960.

[ZWC+23a] Wuqi Zhang, Lili Wei, Shing-Chi Cheung, Yepang Liu, Shuqing Li, Lu Liu,
and Michael R. Lyu. Combatting Front-Running in Smart Contracts: Attack
Mining, Benchmark Construction and Vulnerability Detector Evaluation.
IEEE Transactions on Software Engineering, 49:3630–3646, 2023. doi:
10.1109/TSE.2023.3270117.

48

[ZWC+23b] Wuqi Zhang, Lili Wei, Shing-Chi Cheung, Yepang Liu,
Shuqing Li, Lu Liu, and Michael R. Lyu. erebus-
redgiant, 2023. https://github.com/Troublor/erebus-
redgiant/tree/4544163f0c6a369b35c3237851f482d240fa7bbd. Accessed
13.7.2024.

49

	Kurzfassung
	Abstract
	Contents
	Introduction
	Contributions

	Background
	Ethereum
	World State
	EVM
	Transactions
	Blocks
	Transaction submission
	Transaction execution
	Nodes
	RPC

	Transaction order dependency
	Approaching TOD
	Motivating examples
	Relation to previous works
	Imprecise definitions
	TOD definition
	State collisions
	TOD candidates
	Causes of state collisions
	Everything is TOD

	TOD candidate mining
	TOD candidate finding
	TOD candidate filtering
	Experiment
	Deduplication

	Trace analysis
	TOD Attack results
	Tool benchmarking
	Systematic Literature Review
	Result

	Data availability
	Reproducibility
	Tool
	Randomness
	Experiment setup

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

